A Re-evaluation of the Hammett σ_p Values for the Hydroxymethyl and Formyl Groups

By Jean-Pierre Girault and Gilbert Dana,* Université Pierre et Marie Curie, Laboratoire de Chimie Organique Structurale, Bat.F, 4 Place Jussieu, 75230 Paris Cedex 05, France

The Hammett constant σ_p for the hydroxymethyl group is estimated as -0.04 ± 0.03, and that for the formyl group is re-evaluated as +0.57 ± 0.07.

CORNISH and EABORN¹ have proposed recently the relationships (i) and (ii) concerning the Hammett constant $\sigma_p(CH_2Y)$. These relationships have been tested with good agreement for two groups (Y = CN or OMe) for which experimental data were available. Applied to the group CH₂OH (Y = OH) they lead to the

$$\sigma_p(CH_2Y) = -0.11 + 0.5\sigma_p(Y)$$
 (i)

results: $\sigma_p(CH_2OH) = +0.04$ and +0.07, from equations (i) and (ii), respectively.

In a recent study 2 of the transmission of electronic effects by the furan ring, we have found good correlations

$$\sigma_p(\mathrm{CH}_2\mathrm{Y}) = \sigma_p^+(\mathrm{CH}_2\mathrm{Y}) + 0.06 \qquad (\mathrm{ii})$$

between $\delta^{(13C)}$ and σ_p [equation (iii)] for the carbonatoms of the heterocycle in compounds of type (1). The parameters of equation (iii) for the four carbon

$$\delta(^{13}C) = \delta_0 + \rho \sigma_p(X) \tag{iii}$$

atoms of the furan ring are summarized in the Table, which also gives the shifts for $X = CH_2OH$ and the deduced σ_p values. It appears that these correlations give the best value of $\sigma_p(CH_2OH)$ in the case of C_{θ_i} *i.e.*

$$X \xrightarrow{\beta_{\alpha}}_{\alpha} \xrightarrow{\beta'}_{\alpha} (1)$$

 -0.05 ± 0.02 . As this value is not exactly the same as that calculated by Eaborn, we undertook a direct

¹ A. J. Cornish and C. Eaborn, J.C.S. Perkin II, 1975, 874. ² G. Dana, O. Convert, J. P. Girault, and E. Mulliez, Canad. J.

² G. Dana, O. Convert, J. P. Girault, and E. Mulliez, *Canad. J. Chem.*, 1976, **54**, 1827.

³ A. Albert and E. P. Serjeant, 'Ionization Constants of Acids and Bases,' Wiley, New York, 1962.

determination by means of the pK value. Using the potentiometric method of Albert and Serjeant,³ we obtained for p-hydroxymethylbenzoic acid (HMBA) in water at 25 °C a pK value of 4.16 \pm 0.03. The pK value of benzoic acid (BA) was also measured,⁴ and gave the same result as in ref. 3, *i.e.* 4.12 \pm 0.01. Hence $\sigma_p(CH_2OH)$ [= pK(BA) - pK(HMBA)] = -0.04 \pm 0.03, which agrees well with the value from n.m.r. data.

The established value ⁵ of σ_p (CHO) (+0.45) appears too small in view of our n.m.r. data,² which suggest a value of +0.57 \pm 0.07. This value is inferred from $\delta(^{13}C_{\beta})$, which gives a better correlation than $\delta(^{13}C_{\alpha})$

Parameters of equation (iii) *

				δ(13C) for	
	δο	ρ	Y ²	$\mathbf{X} \stackrel{\sim}{=} \mathbf{C} \mathbf{H}_2 \cdot \mathbf{O} \mathbf{H}$	$\sigma_p(CH_2OH)_{calc.}$
Cα	142.07	2.24	0.963	141.80	-0.12
	± 0.08	± 0.18			± 0.10
Сβ	105.08	4.76	0.958	104.82	0.05
	± 0.2	± 0.4			± 0.02
Cα	153.56	-2.20	0.852	153.62	-0.02 †
Cβ′	111.72	0.598	0.843	111.46	‡

* Uncertainties in δ_0 and ρ values are classical determinations resultingfrom regression analysis (N. R. Draper and H. Smith, 'Applied Regression Analysis,' Wiley, New York, 1966), and were obtained by using a Hewlett-Packard Hp-55 computer. † Greater imprecision than for C_a [smaller r^2 value, with the same slope (W. H. Davis, jun., and W. A. Pryor, J. Chem. Educ., 1976, 53, 285)]. ‡ Too small a ρ value for determination of σ_p .

[corresponding to $\sigma_p(\text{CHO}) = +0.61 \pm 0.12$]. This new evaluation of $\sigma_p(\text{CHO})$ is satisfactory in comparison with values for similar electron-withdrawing groups such as COMe (+0.502) and CO₂Et (+0.45).⁴

[6/1832 Received, 29th September, 1976]

⁴ D. H. McDaniel and H. C. Brown, J. Org. Chem., 1958, 23,

420. ⁵ A. A. Humffray, J. J. Ryan, J. P. Warren, and Y. H. Yung, *Chem. Comm.*, 1965, **26**, 610.